¿Qué hace el turbo de geometría variable?

En un artículo anterior hablamos aquí en AUTOTEST del tema de los turbos, específicamente de las diferencias entre los sistemas de doble turbo y aquellos que instalan un sistema denominado twin turbo, y como ambos, con sus diferencias y particularidades ayudan a mejorar la eficiencia del motor.

Hoy continuamos con esta temática y nos referiremos a una tecnología desarrollada también para la turbocompresión y que busca que el motor en su funcionamiento pueda aprovechar en todo momento el máximo aporte que pueden hacer los gases que son expulsados en el proceso de combustión para generar un mayor volumen de aire que alimente la cámara de combustión.

Se trata del turbo de geometría variable.

El turbo de geometría variable es una variante del sistema de turbocompresión tradicional que presenta un inconveniente cuando el vehículo transita en regímenes bajos, a bajar revoluciones. Cuando esto pasa los gases de escape no son expulsados con suficiente fuerza y por ello no pueden mover las turbinas para generar mayor presión y volumen de aire a las cámaras.

Y, por el contrario, cuando se transita a un régimen de altas revoluciones por minuto, la fuerza con la que son expulsados los gases tras el proceso de combustión es tan alta  que se activa la válvula de descarga y así una parte de esos gases de escape no llegan a la turbina y por lo tanto la operación del sistema turbo no aprovecha de manera eficiente el potencial que puede tener para inyectar mayor volumen de aire y hacer más eficiente la combustión de la mezcla.

Con su diseño, el turbo de geometría variable pretende mitigar estos efectos y generar un trabajo constante en el aprovechamiento del potencial de los gases de escape para obtener una mayor eficiencia dinámica del automotor.

¿Cómo lo hace?

A través de la modificación de la entrada de las turbinas. Cuando el vehículo circula a bajas revoluciones esta sección de entrada se hace más pequeña, y con esto lo que se logra es que los gases de escape al tener que pasar por una entrada de menor dimensión deban hacerlo a una mayor velocidad y con esta velocidad pueden así mover las turbinas y generar la presión adecuada para que ingrese aire a la cámara de combustión. Cuando se presenta la situación contraria, es decir, el carro está rodando en un régimen de altas revoluciones, la sección de paso de los gases en la turbina se amplía y con eso la velocidad de entrada de los gases disminuye permitiendo que el mayor porcentaje posible entre y no vaya a la válvula de descarga, para aprovechar así toda la potencia que puedan generar en nuevo aire para alimentar la mezcla de aire y combustible y propiciar una combustión de más alta eficiencia y mejor resultado en el desempeño dinámico del automotor.

El sistemas de turbo de geometría variable se instala en vehículos que utilizan combustible diésel ya que en los vehículos de gasolina la alta temperatura con la que son expulsados estos gases luego del proceso de combustión generaría inconvenientes para su operación.

Una de las características del turbo con geometría variable es su sistema de lubricación que debe ser más eficaz y con cambios de aceite mayores que en un sistema tradicional.

De doble turbo y turbos gemelos (twin turbo).

La tecnología de motores turbo cada vez se impone más entre los fabricantes automotrices y en las opciones de elección de los potenciales compradores de vehículos nuevos y usados.

Los vehículos dotados con esta tecnología pueden ofrecer a partir de motores pequeños y bajas cilindradas unas prestaciones y un comportamiento dinámico que un motor atmosférico tradicional solo podría alcanzar con cilindradas superiores a los 2 litros. Para los fabricantes significa un ahorro importante en la construcción de sus motores y para el conductor la posibilidad de disfrutar de un dinamismo superior con un vehículo de precio más favorable.

El desarrollo de esta tecnología ha permitido a la ingeniería automotriz avanzar en la implementación de mejoras en el diseño y el funcionamiento de estos elementos haciéndolos cada vez más eficientes. Por eso es posible encontrar diferentes tipologías de turbos que utilizan diferentes marcas.

En este artículo aclaramos de forma sencilla una confusión que puede darse cuando se habla de carros con motores turbo, y tiene que ver con los motores turbo twin y los motores doble turbo Son lo mismo

Twin Turbo

Este desarrollo de la tecnología turbo podría de entrada confundir y hacer pensar que se trata de una configuración motriz con un sistema de doble turbo. Pero no es así. La tecnología de twin turbo está basada en un diseño de un único turbo pero con la característica de tener dos entradas en su turbina para los gases de escape. También por esto se le puede conocer como Twin Scroll. Con este diseño lo que se busca es un mejor aprovechamiento de esos gases que son expulsados por el múltiple de escape una vez se cumple la fase del proceso de combustión y que con un turbo de configuración tradicional un porcentaje de dichos gases pueden perderse o ser reaspirados.

Doble turbo

Es otra de las configuraciones en el diseño de la unidad de potencia que se puede encontrar en los vehículos. En este caso sí se puede hablar de dos turbos que aportan su trabajo para aprovechar la energía de los gases de escape y generar la sobrealimentación necesaria para alimentar con mayor cantidad de aire al motor y entregar la potencia estimada por el fabricante.

En este tipo de diseño el sistema turbo puede funcionar bajo varias configuraciones

  • Turbo paralelo son dos turbos con el mismo tamaño y características y que recogen el aire que es expulsado de los cilindros Cada turbo se encarga de recibir los gases que de la mitad del numero de cilindros que conforman el bloque motor para administrar la sobrealimentación a la máquina.
  • Turbo en configuración secuencial o en serie aquí dos turbos uno más grande y otro más pequeño actúan de manera alternada. El turbo de menor tamaño actúa cuando el vehículo está rodando en bajas revoluciones y a este ritmo los gases salen de los cilindros con una menor velocidad y no requieren tanta fuerza para mover la turbina. Por su parte cuando el auto va en revoluciones altas el turbo más grande es el encargado de recibir esos gases que tiene una velocidad de salida mucho mayor y la capacidad de mover el mecanismo de mayor dimensión y generar la sobrealimentación al motor.

Turbo, más potencia con motor más pequeño.

Crédito: Jan Barkman para Pixabay

En el mercado automotor actual es creciente la tendencia a encontrar oferta de modelos con la característica de estar equipados con una motorización turbo. Vehículos en prácticamente todos los segmentos del mercado ofrecen esta posibilidad, que brinda un mejor desempeño, una mejor sensación de conducción y también es una fortaleza en temas de consumo de combustible y menores emisiones de gases al medio ambiente.

El motor convencional atmosférico toma aire del exterior para llevarlo al colector de admisión y allí introducirlo en la cámara de combustión para generar la mezcla de aire y combustible que se enciende con la chispa generada por la bujía en la carrera ascendente de los cilindros y generar la explosión que desencadena el movimiento de pistones, bielas y cigüeñal para transmitirlo finalmente a las ruedas y dar avance al vehículo.

El motor equipado con un sistema de turbo no solo utiliza el aire que “chupa” del medio ambiente. Además, utiliza una ayuda adicional con los gases de escape que se generan tras el proceso de combustión para propiciar un mayor flujo de aire para la mezcla.

El sistema tiene dos componentes principales, una turbina y un compresor.  Cuando se presente la combustión se generan los gases que en el motor atmosférico convencional circularían por el sistema de escape para su expulsión. Pero en un vehículo con motorización turbo estos gases de escape recirculan a través del turbo haciendo girar esa turbina que en su movimiento genera una cantidad de aire adicional con una velocidad y una presión mucho mayor y que es llevado al sistema colector de admisión en el motor. Así se enriquece la mezcla de aire que llega hasta la cámara de combustión y se obtiene un mayor rendimiento en la entrega de potencia y par motor.

El sistema de turbo compensa la pérdida que tiene un motor convencional en el ingreso de aire a la cámara por el rozamiento de conductores y colectores en el motor con la generación de ese mayor volumen de aire que produce.

 El desarrollo de sistemas turbo en los motores ha permitido que los fabricantes automotrices puedan presentar al mercado alternativas de vehículos con motores de bajo cubicaje y menor peso,  pero con desarrollos de potencia que en motores convencionales solo podrían ser posibles con bloques de 2 litros en adelante.

Menos combustible y menos emisiones

Los motores que tienen un sistema de turbo son máquinas que generan un menor consumo de combustible. Al comparar estos motores y la potencia que generan con los aquellos motores atmosféricos convencionales de mayor cilindrada e igual potencia se encuentra que el motor turbo puede propiciar un ahorro aproximado de un 15% a 20% en consumo de combustible.

Y ese menor consumo de combustible es también una ventaja al entregar menos emisiones al medio ambiente. De manera adicional se debe revolucionar menos para lograr la potencia y el torque adecuado, otro factor que genera un menor consumo de combustible y por lo tanto menores emisiones.

Mantenimiento básico

El buen estado y la vida útil del turbo del vehículo dependen del cuidado al que se someta.

Y uno de los principales factores para su buena conservación en el tiempo es la lubricación. Por eso la primera recomendación es seguir la recomendación del fabricante en cuanto al tipo de aceite que debe usarse en el carro a fin de propiciar las condiciones óptimas para lubricar el sistema.

Ya en materia de manejo es importante no realizar maniobras de aceleración brusca en frío, cuando el motor no ha alcanzado la temperatura ideal para que todo el sistema se encuentre bien lubricado.

Tampoco es aconsejable hacer subir las revoluciones de manera exagerada con el motor en posición de ralentí.

Y una ultima, use gasolina Extra si el vehículo la requiere. No usarlo significaría graves daños al motor en el mediano plazo.

COMPRESORES Y TURBOALIMENTADORES..


La potencia de un motor de combustión interna esta fundamentalmente ligada a su cilindrada, que en última instancia es el volumen de aire con que es capaz de llenar sus cilindros en el ciclo de la aspiración. Para esta cantidad de aire el sistema de combustible, sea de carburador o de inyección deberá introducir una cantidad precisa de gasolina, normalmente en proporción de 14 partes de aire por una de combustible. Quiere decir esto que no obtenemos ningún resultado positivo sobre la potencia si aumentamos la proporción de gasolina, pues la combustión esta regida por leyes físicas y químicas de absoluta precisión.

La única forma de mejorar la potencia es aumentar la cantidad de moléculas de aire que ingresan al motor y así poder añadir la correspondiente cantidad de combustible. Para ello se usan compresores, aparatos que toman aire a presión atmosférica del exterior y lo introducen al motor a mayor presión. Existen dos clases: los turboalimentadores y los supercargadores.

Su diferencia está en la forma como son accionados, pues para poder funcionar necesitan una fuerza externa que los haga mover. Los turboalimentadores son un juego de dos turbinas unidas por un eje. Una de ellas se usa para mover los gases que irán comprimidos al motor y la otra, que es movida por los gases del escape del mismo motor, es la que produce el esfuerzo necesario para hacer el trabajo. Se aprovecha la energía de los gases de escape para proporcionar aire comprimido al motor.

Los supercargadores son un sistema de compresión en forma de lóbulos accionados por movimiento mecánico tomado directamente del motor, en algunos casos por correas o bandas y en otros directamente por piñones. En este caso se aprovecha la energía del cigüeñal del motor para obtener el movimiento que se usa para la compresión del aire.

En ambos casos se usa, de manera adicional un elemento muy mencionado: el intercooler. La razón es que el aire al ser comprimido por el turbo o por el supercargador aumenta su temperatura y aunque aun así hay mayor cantidades moléculas de aire por volumen para ingresar al motor, si estuviese frío seria aún mejor. La solución es colocar un radiador a la salida de los gases comprimidos y extraerle ese calor para poder así bajar su temperatura. Esto se hace con un radiador o enfriador que funciona con aire exterior que pasa a través de el.

El uso de estos aparatos cada vez se hace mas generalizado pues además de mejorar la potencia de los motores de forma importante, hace que su funcionamiento no se afecte por la altura sobre el nivel del mar.