Baterías para carros eléctricos, una evolución en busca de la eficiencia.

En días pasados hablábamos en esta columna sobre el factor de la eficiencia y el consumo como uno de los elementos claves para definir la compra de un carro eléctrico. Y en ese mismo artículo se señalaba como la configuración de la batería es uno de los elementos clave a tener en cuenta cuando se analiza esa eficiencia.

Desde que los carros eléctricos comenzaron a verse como una opción cierta y real para el desarrollo futuro de la industria automotriz, los fabricantes trabajan en el desarrollo de elementos cada vez más eficientes, más durables y también más económicos en su fabricación teniendo en cuenta que son el elemento que más pesa en el costo de fabricación de los autos eléctricos, con cerca de un 30 por ciento del valor.

El trabajo de los departamentos de investigación y desarrollo y de los ingenieros de los fabricantes automotrices y de las firmas fabricantes de baterías ha sido arduo y paso a paso han encontrado alternativas cada vez más acordes con las necesidades de los consumidores de autos que quieren baterías seguras y que les ofrezcan también un rango de autonomía más allá del tránsito urbano.

Es así como en la evolución de estos elementos se pueden identificar varios estadios de evolución en aras de llegar a la batería que cumpla con la idea de bajo costo y gran rendimiento

En las primeras etapas del desarrollo de los carros eléctricos como alternativa de movilidad, éstos contaban con baterías de Niquel-Metal-Hidruro (NiMH). Se trata de unas baterías relativamente económicas en su fabricación y que contaban con un muy buen nivel de vida útil. Sin embargo tenían problemas por su no muy alta densidad de energía y también por su peso. Ambos factores castigaban de manera importante la eficiencia en la operación de los carros que estaban dotados con estos elementos.

Antes de continuar es importante señalar que el concepto de densidad de energía se refiere, de manera básica, a la capacidad que pueden tener las baterías para almacenar una gran cantidad de energía en muy poco espacio. Esto es importante porque es una variable fundamental en la búsqueda de la eficiencia.

En una segunda fase en el desarrollo de las baterías, los fabricantes comienzan a trabajar con acumuladores a partir de Ion-Litio/Polímero de Litio. Estas están presentes un alto porcentaje de los vehículos eléctricos que hoy ruedan en el mundo. Su recurrente utilización por parte de las automotrices está relacionada con una alta densidad energética, lo que contribuye a un menor espacio y también menor peso que lastre el vehículo y afecte de manera negativa sus cifras de rendimiento y autonomía.

Pero también tienen dos factores negativos. El primero de ellos es su facilidad de degradación por los ciclos de cargue y descargue de la misma y que la llevan, con el tiempo, a tener una menor capacidad de almacenamiento. Y el segundo factor es su alto costo de producción, y teniendo en cuenta lo señalado unos párrafos atrás sobre el peso del costo de la batería en el valor total del auto, puede influir de manera importante en un alto precio de compra para el consumidor final.

Además este tipo de baterías también se pueden ver afectadas por la operación en situaciones de climas extremos tanto en el frío, como en las temperaturas altas.

Un tercer tipo de batería utilizada en los carros eléctricos es la estructurada a partir de Níquel-Cadmio-Manganeso (NCM) o Níquel-Cadmio-Óxido de Aluminio (NCA). Este tipo de baterías tiene ventajas relacionadas con su alta densidad energética. De hecho en muchos carros que ofrecen altos niveles de autonomía esta es la batería que se encuentra presente. Así mismo son baterías que pueden soportar altas potencias de carga, lo que facilita un proceso de carga más rápido.

Pero pese a estas ventajas no son las baterías más populares porque para su fabricación es necesario utilizar materiales de difícil consecución especialmente por su costoso proceso de su extracción y procesamiento y esto impacta directamente el precio de los carros. Son los denominados metales de tierras raras como el praseodomio, el lantano, neodimio, disprosio, terbio o lutecio, por ejemplo.

Los trabajos en busca de la “batería perfecta” también han llevado a ingenieros a desarrollar baterías a partir de Litio-Ferrofosfato. Estas baterías si bien no implican los altos costos de producción al no utilizar elementos que implican una alta complejidad para su obtención y transformación, tienen la desventaja de no contar con un nivel alto de densidad energética, lo que se traduce en la utilización de mucho espacio y agregar peso a la construcción del vehículo

Lo que depara el futuro

La evolución de las baterías no para, y la industria automotriz sigue apuntando a un futuro de mediano y largo plazo en el que estos elementos brinden las condiciones de una movilidad cada vez más limpia.

Los esfuerzos de los fabricantes se orientan a dos tipos de soluciones:

Baterías de estado sólido. En ellas en lugar de contar con un electrolito líquido que facilita la reacción química que genera la energía que se almacena y luego se utiliza para mover el vehículo, el electrólito es un material sólido. Este cambio le confiere unas cualidades especiales a la batería. Le da una mayor densidad de carga, incluso almacenando hasta tres veces mayor energía que la batería ion litio con electrolito líquido. De igual manera agiliza los tiempos de recarga. También ofrece una mayor fiabilidad y su trabajo no se afecta de manera sustancial por las condiciones extremas en las que pudiera utilizarse el vehículo que las monta. Así mismo ofrece mayor seguridad al evitar sobrecalentamientos o no hacer explosión en caso de un impacto. Estas baterías también podrían tener menor impacto ambiental desde su producción misma.

Hoy, aún su utilización de forma masiva sigue en proceso de estudio y desarrollo, pero ya son varias las automotrices comprometidas en avanzar en el mediano plazo en su implementación y para ello destinan recursos para su perfeccionamiento. Entre ellas se encuentran Toyota, el Grupo Stellantis, Volkswagen, Renault-Nissan; muchas de ellas trabajando en asocio con firmas expertas en el desarrollo de este tipo de elementos.

Y el segundo frente que el sector automotor explora de cara a ofrecer baterías cada vez mejores es el de las baterías estructurales. Este tipo de baterías tienen la característica de estar integradas a la carrocería del vehículo y no serían una pieza o un elemento adicional que se ubica en la plataforma de desarrollo del carro. Firmas como Tesla o BYD trabajan en su perfeccionamiento. Este tipo de batería lograría un mayor ahorro de espacio y reducción de peso al estar unida a los bastidores adelante y atrás.

Desde Tesla se ha señalado que el perfeccionamiento de este sistema de baterías podría en el futuro contribuir a una reducción de costos de producción de los vehículos eléctricos en casi un 50 por ciento, y también daría una mayor vida útil a los dispositivos y una capacidad de carga aún mayor.

Un futuro que la industria automotriz espera llegue más temprano que tarde.